Lesson 12. Regression and Correlation

1 Overview

- Correlation quantifies the strength of the linear relationship between *X* and *Y*
- Population correlation:
- Sample correlation:
- Some examples that illustrate different correlation values:

https://commons.wikimedia.org/wiki/File:Correlation_examples.png

2 Properties

- 1. Possible values are from
 to

 2. A larger magnitude means a
 linear relationship

 3. $\rho > 0$ means larger values of Y are associated with
 values of X

 4. $\rho < 0$ means larger values of Y are associated with
 values of X

 5. Relation to slope:
 Values of X
 - ⇒ In simple linear regression, testing whether $\beta_1 = 0$ (versus $\beta_1 \neq 0$) is equivalent to testing whether $\rho = 0$ (versus $\rho \neq 0$)

3 Correlation does not imply causation

- Example:
 - $\circ X =$ number of firefighters
 - \circ *Y* = damage in dollars
 - *X* and *Y* probably have a strong correlation
 - Do more firefighters present cause more damage?
 - Size of fire is responsible for both
- A significant correlation only means the variables are associated, not that one causes the other

- 4 Coefficient of determination (r^2)
 - The **coefficient of determination** r^2 tells us how much of the variability in the response variable is explained by the regression model

Example 1. Consider once again our regression model with the PorschePrice data. Look at the R output in Lessons 10 and 11.

- a. Using the ANOVA table output by R, calculate the coefficient of determination (r^2). Interpret it.
- b. Look at the summary output by R, where do you see the value you calculated in part a?